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A Disclaimer

Unlike many of the speakers here, I have been working on these
ideas for just about two or three months!

I have been discussing my ideas with some systems biology
researchers involved in drug discovery, but basically my thoughts
are highly speculative and very preliminary.

Based on further discussions and application to one or more
specific problems, I hope to fine-tune the problem formulation.

All feedback is welcome!
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General Motivation

An attempt to use statistical methods to predict “adverse events”
in clinical trials.

A majority of drug candidates are rejected not for want of efficacy,
but for toxicity (unwanted side effects).

Is it possible to predict that a particular drug candidate has a high
likelihood of failure very early in the development cycle?

If so pharmaceutical companies could save billions of dollars by
closing these programs very early.

“Fail early, fail cheaply” should be the motto.

What can we do to help?
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Drug Discovery & Development Cycle (Simplified)

Basically two broad stages: Pre-clinical and clinical.

Pre-clinical stage: Experiments on target proteins and putative
drug molecules, initially in microarrays, then in cells (in vitro) and
finally in animals (in vivo).

Clinical stage: Experiments on humans in three phases:

• Phase I: 10 to 20 healthy volunteers are tested with drug
candidate to establish no immediate harmful side effects
• Phase II: 100 to 300 afflicted patients are tested with drug
candidate to establish efficacy
• Phase III: 1,000 to 3,000 patients are tested to establish
long-term safety of usage

Late stage failures are very costly!
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Two Kinds of Drug Candidates

Need to distinguish between two kinds of drug candidates: Small
molecules and biologics (large protein molecules).

The former, being small, interact with many proteins in the body
besides the target protein, leading to unwanted side effects; this is
one form of toxicity.

These unwanted interactions are difficult to predict, so perhaps we
have less to offer.

Biologics are very specific, but dosage is a critical factor. Too large
a dosage can be toxic while while too small a dosage is ineffective.

How do we get the dosage ‘just right’ for a wide variety of people
(the Goldilocks problem).
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Why Do Drug Candidates Fail – 1?

Explanation No. 1: Cells just behave differently in a petri dish from
the way they do in animals, and/or they behave differently in
animals from the way they do in humans.

Why? Two main reasons: Absence of context, and absence of
feedback (open-loop models).

As system theorists we can undertake to study and explain how
interconnections of systems behave.

That is a topic for another talk.
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Why Do Drug Candidates Fail – 2?

Explanation No. 2: Physiological parameters of people vary across
a very wide spectrum – often an order of magnitude.

The “probability distribution” of physiological parameters is not
known, and will probably never be known to any reasonable extent.

Adverse reactions in just 1% of patients can cause rejection!

Challenge: Predicting extreme events with very little data.

M. Vidyasagar Predicting Adverse Events in Clinical Trials



Motivation
Abstract Problem Formulation

Relationship to Conventional Learning Problem
Non-Standard Learning Problem

Next Steps

General Motivation
A Motivating Example

Outline

1 Motivation

General Motivation

A Motivating Example

2 Abstract Problem Formulation

3 Relationship to Conventional Learning Problem

4 Non-Standard Learning Problem

Problem Formulation and Significance

A Classical Statistical Mechanics Approach

A Linear Programming Formulation

5 Next Steps

M. Vidyasagar Predicting Adverse Events in Clinical Trials



Motivation
Abstract Problem Formulation

Relationship to Conventional Learning Problem
Non-Standard Learning Problem

Next Steps

General Motivation
A Motivating Example

A Motivating Example (Out Dozens of Possibilities)

Reference: Susan Grange et al., “A pharmacokinetic model to
predict the PK interaction of L-Dopa and Benzerazide in rats,”
Pharmaceutical Research, 18(8), 1174-1184, 2001.

21 male albino rats were administered L-D or B or both, and
results observed. The pharmacokinetic interactions were modeled
by a compartmental model consisting of 9 ODEs of the form

ẋ = h(x,α)

where x ∈ R9 is the ‘state’ of the system, h represents the
dynamics, and α ∈ R30 represents the vector of physiological
parameters.
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Experimental Results and Fit to the Model Predictions – I
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Experimental Results and Fit to the Model Predictions – II
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Why are Predictions So Bad?

Model predicts average behavior well but does not even come close
to predicting the range of behavior as physiological parameters
vary.

Why? Because we have only 21 data points in R30!

So what is the remedy?
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Abstract Problem Formulation

The physiological process under study is modeled by

ẋ = h(x,α),

where x is the state of the system, and α is the vector of
physiological parameters. Typically h contains terms that are
linear, bilinear, or ‘saturating’ (Michaelis-Menten kinetics) in x,
and linear in α.

Problem: The vector α is random and has an unknown probability
distribution. What can we say about the probability distribution of
the solution x(·)?
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The probability distribution of α is not entirely unknown!

There are strong correlations between components of α. If α has
k components and we just discretize to H and L (high and low),
then not all 2k possible combinations are physiologically
meaningful!

This can be captured by postulating a family of probability
distributions P, and saying that the true probability distribution P
of α belongs to P but is otherwise unknown.

Examples: Mixture models (on which more later).
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Some Simplifications – 2

Often statements about steady state values are often good enough
(we can ignore dynamics).

Let f(α) denote some function of the steady-state solution of the
equation ẋ = h(x,α).

So f is the quantity of interest, e.g. the peak value over time of
some response; if f(α) is higher than some threshold then drug
gets rejected. We can have multiple quantities of interest also.

We can ‘compute’ f as a function of α by solving system
equations for many combinations of α.
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Less Abstract Problem Formulation

There is a known function f of α, and a known family of
probability distributions P to which the distribution of α belongs.
A threshold ε is specified.

Problem: Estimate Pr{f(α) > ε}.

Again, we can have multiple functions and multiple thresholds, and
we can seek to estimate the probability of any Boolean function of
the events {fi(α) > εi}, such as and, or, not, and so on.
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A Conventional Learning Problem

Given a function f : A→ R, and an unknown probability
distribution P on A, estimate E[f, P ].

Standard solution: Generate i.i.d. samples α1,α2, . . . ,αl from A
with distribution P . Compute the ‘empirical mean’

Ê(f ; αl
1) :=

1
l

l∑
j=1

f(αj).

Then Ê(f ; αl
1) is a decent approximation to E[f, P ].

Depending on stopping criterion, known as ‘Monte Carlo’ or ‘Las
Vegas’ algorithm.
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Sample Complexity Estimates

Hoeffding’s inequality states that, if f is bounded between [a, b],
then

P l{αl
1 ∈ Al : |Ê(f ; αl

1)− E[f, P ]| > ε} ≤ 2 exp(−2lε2/(b− a)2).

A ‘universal’ bound, valid for every probability measure P . If

l ≥ (b− a)2

2ε2
ln

2
δ
,

then we can say that |Ê(f ; αl
1)− E[f, P ]| ≤ ε with confidence

1− δ.

Recent work by Abdallah, Dorato, Tempo, Alamo et al. makes
l ∼ O(1/ε), not O(1/ε2).
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Vapnik-Chervonenkis Theory

Hoeffding’s inequality can be used to estimate the means of finitely
many functions simultaneously.

What happens if we want to estimate, simultaneously, infinitely
many means?

One computes the so-called VC-dimension, or its generalization the
so-called Pollard dimension. If it is finite, then again the maximum
error between the empirical means and true means goes to zero as
l→∞, where l is the number of samples.

Extensions to the case where successive samples are correlated, etc.

These are conventional problems in statistical learning theory.
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Key Assumptions Underlying the Theory

1 We have access to samples αj generated according to the
‘true but unknown’ probability measure P .

2 For each sample, we can compute f(αj).

What if these assumptions do not hold?
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Non-Standard Learning Problem

Given known functions f, g1, . . . , gk of a random parameter vector
α with unknown probability distribution P ∈ P.

Given the values

gi(αj), i = 1, . . . , k, j = 1, . . . , l

corresponding to randomly generated samples α1, . . . ,αl

distributed according to P .

Compute upper and lower bounds for E[f, P ].
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Distinguishing Features of Non-Standard Problem

1 We are not allowed to see the samples α1, . . . ,αl directly.
(Otherwise we could ignore the functions gi and just use
Monte Carlo simulation.)

2 k � l, so we cannot ‘invert’ the functions gi to deduce
samples.

3 We are happy to get just upper and lower bounds for E[f, P ].

In clinical analysis, the function gi can be thought of as
‘bio-markers’ – they give an indication of the unknown and
unmeasurable physiological parameters α.

M. Vidyasagar Predicting Adverse Events in Clinical Trials



Motivation
Abstract Problem Formulation

Relationship to Conventional Learning Problem
Non-Standard Learning Problem

Next Steps

Problem Formulation and Significance
A Classical Statistical Mechanics Approach
A Linear Programming Formulation

Usefulness of Bounds on Expected Value

How can we use bounds on fu, fl on E[f, P ] to estimate tail
probabilities?

Markov’s inequality: Suppose f ≥ 0. For every ε > 0, we have

P{α ∈ A : f(α) > ε} ≤ E[f, P ]
ε

≤ fu
ε
.

Refined Markov’s inequality: For every ε > 0 and every λ, we have

P{α ∈ A : f(α) > ε} ≤ exp(−λε)E[exp(λf), P ].

Proof: Note that {f(α) > ε} ⇔ {eλf(α) > eλε}, and apply
standard Markov inequality.
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A Further Refinement

If there are too few samples, we can modify the problem:

Given known functions f, g1, . . . , gk of a random parameter vector
α with unknown probability distribution P ∈ P, and given that
E[gi, P ] = ci, i = 1, . . . , k, compute upper and lower bounds for
E[f, P ].

Given the random measurements of gi(αj), the estimated means
Ê[gi, P ], i = 1, . . . , k are more reliable than individual samples.

This is especially true when some measurements are ‘missing’, i.e.
gi(αj) is not available for some pairs (i, j).
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Statistical Mechanics Approach (Jaynes 1957)

Specific reference: E. T. Jaynes, “Information theory and statistical
mechanics,” Physical Review, 106(4), 620-630, May 15, 1957.

Suppose α ∈ A, a finite set. Find the probability distribution P on
A that has maximum entropy while satisfying the k equality
constraints

E[gi, P ] = ci, i = 1, . . . , k.

Recall that if P has the distribution p = [pi], then the entropy of
P is given by

H(p) =
m∑
i=1

pi log(1/pi),

where m is the size of the set A where α lives.
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Statistical Mechanics Solution

It turns out that P is unique because the above is a convex
optimization problem. It leads naturally to the so-called ‘partition
function’ of statistical mechanics.

Perfectly fine for ‘equilibrium’ situations, i.e. when we can assume
that the world tends towards maximum entropy while respecting
physical measurements.

Not so fine for our situation – Why should unknown probability
distribution P have maximum entropy?
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A Linear Programming Formulation

Problem: Given functions f, g1, . . . , gk : A→ R, and constants
c1, . . . , ck, find

minE[f, P ] s.t. E[gi, P ] = ci, i = 1, . . . , k,

maxE[f, P ] s.t. E[gi, P ] = ci, i = 1, . . . , k.

If universe A where α lives is a finite set, then both are linear
programming problems!
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Some Observations

Note: If f is a linear combination of the functions g1, . . . , gk, then
the constraints automatically specify E[f, P ]!

In general, project f onto subspace spanned by the functions
g1, . . . , gk. Write

f(α) = fr(α) +
k∑
i=1

bigi(α),

where fr is the ‘residual’ or unpredictable part.

Choose a ‘nominal’ probability measure P0 ∈ P, and choose the
constants bi to minimize the `2-norm of fr, i.e. E[f2

r , P0]. This
guarantees that fr is orthogonal to each gi, i.e.

E[frgi, P0] = 0, i = 1, . . . , k.
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Reformulation of Problem

As stated problem is infeasible!

Suppose α has 30 components (as in Susan Grange’s paper), and
we discretize each component to just two values (high and low).
Then |A| = {H,L}30 has 230 ≈ 109 elements!

And what do we do if A is an infinite set (continuously varying
parameters α)?

Source of difficulty: Failure to use prior information about the
possible probability distribution P . We have already seen that
arbitrary probability distributions of physiological parameters make
no sense!
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Formulation of Mixture Models

Remedy: Assume a ‘mixture model’ – works even if A is infinite.

Assume that the unknown probability distribution P ∈ P, where

P =

{
P =

s∑
i=1

λiPi

}
,

where P1, . . . , Ps are known probability distributions that reflect
physiological realism.

Prior information (or a priori belief) is incorporated into the choice
of the ‘extremal’ distributions P1, . . . , Ps.
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Use of Mixture Models

In the standard PK/PD world, one uses (say) a mixture of three
Gaussian measures:

P = λ1P (N(µ1, σ1)) + λ2P (N(µ− 2, σ2)) + λ3P (N(µ3, σ3)),

and uses the observed values of the physiological parameters
α1, . . . , αl to estimate the means µi, variances σi, and weights λi.

Highly nonlinear problem, and answers are not very reliable.

Our approach: Instead of a mixture of three Gaussians, take a
mixture of fifty or a hundred Gaussians, with unknown weightages
λi!

Converts a nonlinear estimation problem into a linear programming
problem!
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Linear Problem Formulation With Mixture Models

In our setting, the problem becomes

maxE[f, P ] s.t. E[gi, P ] = ci, i = 1, . . . , k, and P =
s∑
i=1

λiPi.

Features:

• This is also an LP, but in λ1, . . . , λs, the weights used in the
mixture model.
• Size of problem is now s, the number of ‘corner’ probability
distributions.
• Therefore we can have a very large number of mixture elements
(several hundred if we wish) and the problem is still tractable.
• We don’t try to estimate the mixture model itself.
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Choosing the ‘Right’ Disease to Apply Theory

Need to find a disease in which

The mechanisms of disease onset and drug action (in terms of
the cascade of pathways) are fairly well-understood. This
leads to a ‘known functions of unknown parameters’.

A few moderately reliable biomarkers are available.

A medical researcher is interested.
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Current Status

Have identified some practical problems in clinical studies that fit
this framework.

Working with various clinicians to obtain ‘real data’.

Getting ‘real data’ is as hard as pulling ‘real teeth’ !

Some hope on the horizon – will report when some success is
realized.
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Thank You!
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