The Quest for the Artificial Pancreas Clinical and Engineering Studies

Francis J. Doyle III

Department of Chemical Engineering Biomolecular Science and Engineering Program Institute for Collaborative Biotechnologies UC, Santa Barbara

UIUC Control & Modeling in Biomedical Systems Symposium, April 22, 2010

Artificial Organs

- pancreas
- heart
- kidney
- limbs
- cochlear implant
- retinal prosthesis
- proprioception system

Der Mensch als Industriepalast

Controlled Drug Delivery

- anesthesia
- blood pressure
- analgesia
- HIV
- cancer
- blood glucose

Controlled Drug Delivery

- Dosing of a therapeutic agent is *dynamic*
 - Constant delivery over time
 - Cyclic or pulsatile or biphasic
 - Triggered by environment
- Design of novel biomaterials to achieve optimal dosing is active area of research
- Control and dynamic systems approach
 - Optimized design of a polymer (e.g., hydrogel)
 - Algorithmic optimization of delivery device

[Brannon-Peppas, 1997]

Diabetes Mellitus

- World's most common and costly disease
- About one in every 400 to 600 children and adolescents has type 1 diabetes mellitus (T1DM)

National Diabetes Fact Sheet, 2005, Centers for Disease Control and Prevention

- Complications of T1DM reduce life expectancy by ~15 years through micro- and macro-vascular disease
 - Heart disease and stroke
 - Blindness
 - Kidney disease
 - Nervous system disease
- Evidence that intensive insulin therapy (IIT) reduces complications Diabetes Control and Complications Trial Research Group, 1993
- Increased hypoglycemic events with IIT

Diabetes Control and Complications Trial Research Group, 1993

The Cost of Diabetes

- Complications
 - Heart disease and stroke
 - High blood pressure
 - Blindness
 - Kidney disease
 - Nervous system disease

Glucose Homeostasis

Artificial Pancreas in the News

The Glucose – Insulin "Loop"

(i) Automatic Control(ii) Day-to-day Control(iii) Efficient Solution

Insulin Delivery

Glucose Measurement

Normalization of Glycemia

UCSB/Sansum Approach

Feedback control algorithm

Core insulin delivery algorithm

Ellingsen et al., 2009, J. Diabetes Sci. Tech.; Percival et al., submitted, 2009

Hypoglycemia prediction

- Alarms and pump shut-off Dassau et al., 2008, *Diabetes*
- Meal detection
 - Augment control algorithm Dassau et al., 2008, *Diabetes Care*
- Iterative learning control
 - Account for intra-subject variations Zisser et al., 2005 Diabetes Technol. Ther.; Wang et al., 2009, IEEE Trans Biomed Eng, 2009
- Hardware-in-the-loop trials
 - Testing communication protocols of off-the-shelf devices Dassau et al., 2009, *Diabetes Technol . Ther*

Real-time Glucose Measurement

STSTM Receiver

Source: DexCom,Inc.

Not actual patient data

Source: Medtronic Diabetes

Continuous Subcutaneous Insulin Infusion (CSII)

Artificial Pancreas (β-cell) Software

Human Machine Interface

Artificial Pancreas Software

 \bigcirc Clinical Sites with access to the APS:

- O SDRI / UCSB
- Stanford Medical School
- Barbara Davis Center
- O University of Virginia
- University of Padova, Italy O
- University of Montpellier, France Ο
- Schneider Children's Medical Center of Israel, Israel

Dassau et al., 2008, "Modular Artificial β-Cell System: A Prototype for Clinical Research", J Diabetes Sci Technol 2(5), 863-872 Dassau & Zisser et al., 2009, "Sansum / UCSB Artificial Pancreas Software (APS)", Food and Drug Administration Master File, (MAF-1625)

Université Montpellier I NATIONAL CENTER FOR CHILDHOOD DIABETES Schneder Childhood Diabetes

TUTE FOR ENDOCRINOLOGY AND DIABETE

UCSB/Sansum APS © Artificial Pancreas Software

Hardware-in-the-Loop Testing

- A complete artificial β-cell system testing platform, allowing:
 - Systematic analysis
 - Component Verification and Validation
 - Complete system V&V
 - PnP for *in silico* patients
 - PnP for control algorithms
- Realistic virtual clinical trial

Model-Based Control Approach for Diabetes

[Parker, Peppas, Doyle III, IEEE Trans Biomed. Eng. 1999]

Key tenet of Robust Control Theory: Achievable performance is directly tied to model accuracy

Moving Horizon Concept of MPC

Individualized Algorithm: Subject Model

Individualized Algorithm: Subject Model

$$\left(1+\sum_{l=1}^{n_A}a_lq^{-l}\right)G(k) = \left(\sum_{m=1}^{n_{B_1}}b_{1,m}q^{-m-k_1}\right)I_D(k) + \left(\sum_{n=1}^{n_{B_2}}b_{2,n}q^{-n-k_2}\right)G_M(k) + e(k)$$

lagged values of blood sugar (2-3)

lagged values of insulin delivered (1-2)

lagged values of CHO consumed (4-5)

Typical subject model has ~8 coefficients

Algorithm Engineering MPC for Diabetes

- "Traditional" MPC has been employed in petroleum refineries for ~4 decades
- Application to T1DM requires algorithm customization
- UCSB/Sansum innovations:
 - Discrete event disturbance estimation (i.e., meals)
 - Efficient programming implementation (mpMPC)
 - Safety constraints (Insulin-on-Board)

Multi-Parametric Programming Implementation

[Percival et al., AIChE, 2008]

- Biomedical devices are subject to stringent FDA regulation
 - Limitations on on-line optimization
 - Prior risk analysis mandatory
- MPC can be transformed into a multiparametric program (mpMPC)
 - Offline optimization over state-space region
 - Lookup table of optimal control laws
 - Online optimization
 - Determine *critical region* in state-space
 - Evaluate an affine function of the state vector
- In silico response to an announced 60 g CHO meal
 - Bolus-style controller response
 - Hyperglycemia and hypoglycemia avoided
 - Euglycemia restored in under three hours
 - Variations in the state vector change the critical region used to evaluate the control law

Safety Constraints – Insulin on Board (IOB)

- Residual insulin (IOB) remains active for up to 8 hours
- Clinicians and bolus "wizards" factor in IOB
- Constraint formulation
 - Choose IOB curve
 - Calculate IOB
 - Allow insulin for correction
 - Allow insulin for meals
 - Constrain control algorithm

Time–Action Profile Of Insulin Glargine Following Subcutaneous Injection. Glycemic clamp study. [Taken from Lepore et al, *Diabetes* 49:2142–2148, 2000]

Walsh and Roberts, *Pumping Insulin*, 2006 Zisser et al., *Diabetes Technol Ther*, 2008 Ellingsen et al., *J Diabetes Sci Technol*, 2009

Clinical Evaluation

- FDA requirements
 - Investigational Device Exemption (IDE)
 - Detailed proof of safety of protocol/software
 - Master file already acknowledged for APS
- Phase I in silico trial
 - UVa-Padova simulation platform
 - 300 virtual subjects
 - Master file already acknowledged
 - Evaluate same clinical protocol
- Phase II *human subject studies*
 - Initial studies underway in Israel
 - Planned studies in Santa Barbara in late 2009
 - Large international trial (multi-site) planned for 2010

In Silico Trial Results [100 adult subjects]

Clinical Trial Results

[Schneider Children's Medical Center of Israel, Tel Aviv]

Sansum / UCSB Presents: Closed-Loop Insulin Delivery using Multi-Parametric MPC with Insulin-on-Board

Schneider Children's Medical Center, Israel

March 2, 2009

Clinical Trial Results Summary

- Starting point in Upper B-zone
- Time in range (80 -180 mg/dL): ~70%
- No hypoglycemia episodes
- CVGA : all in A+B zone (Including meal time)

MPC Cost Function Formulation

$$J(\underline{u}) = \sum_{j=1}^{P} \left\| \left(y_{k+j} - y'_{k+j} \right) \right\| Q_j + \sum_{j=0}^{M-1} \left\| \left(u_{k+j} - u_s \right) \right\| H$$

s.t.
$$x_{k+j} = f\left(x_{k+j-1}, u_{k+j-1} \right) \quad \forall j = 1, P$$

$$y_{k+j} = g\left(x_{k+j}, u_{k+j} \right) \quad \forall j = 1, P$$

$$u_{\min} \leq u_{k+j} \leq u_{\max} \quad \forall j = 1, M$$

$$\Delta u_{low} \leq \Delta u_{k+j} \leq \Delta u_{up} \quad \forall j = 1, M$$

Set-point MPC keeps the reference at a constant value that is the target of the optimization

However, a precise reference is not consistent with medical practice

Zone-MPC Formulation

Zone-MPC optimizes

predefined range

future predictions into a

$$J(\underline{u}) = \sum_{j=1}^{P} \left\| v_{k+j}^{range} \right\| Q_j + \sum_{j=0}^{M-1} \left\| \left(u_{k+j} - u_s \right) \right\| R_j$$

s.t.
$$y_{k+j} = f\left(y_{k+j-1}, u_{k+j-1} \right) \quad \forall j = 1, P$$

$$0 \le u_{k+j} \le u_{\max} \quad \forall j = 1, M$$

Accounted cost dynamics

> injection treatment

injection treatment **–** Zone-MPC range: 80 to 140 [mg/dL]

The tighter the range becomes, the higher the variability in control moves

Summary Statistics – Nominal Case

Meal	Controller mode	% of time in range between 70 and 180 mg/dL	% in zone A and B of the control variability grid analysis	Low blood glucose index (LBGI)	High blood glucose index (HBGI)
Unannounced	Zone 80-140	56	100	0	8.1
	mg/dL				
	Zone 100-120	66	100	0	6.3
	mg/dL				
	Set-point 110	68	100	0.1	5.6
	mg/dL				
Announced	Zone 80-140	72	90	0.2	5.1
	mg/dL				
	Zone 100-120	79	80	0.5	3.8
	mg/dL				
	Set-point 110	82	80	0.6	3.3
	mg/dL				
"Optimal" injection treatment		50	90	0	9.2

Comparison between Injection Treatment and Zone-MPC with -40 % Meal Uncertainty

Looking Towards the Future:

Safety Issues

Human Variability

Hypoglycemia Prediction

- Intensive insulin therapy has an inherent risk of nocturnal hypoglycemia
 - No response to any alarm
 - Threshold alarms are insufficient

Prediction of pending hypoglycemic event & pump suspension

iked BG •

Seizure

10:00a

12:00p

2:00p

200

Dassau et al. 68th ADA meeting San Francisco CA, 06.08.08

6:000

8:00p

4:00p

40

70

67

Fri 0:00

Hypoglycemic Predictive Algorithms

[collaboration with Stanford, RPI]

- SP: Statistical linear prediction: multiple empirical, statistical models are used to estimate future blood glucose values and their error bounds
- KF: Kalman filter to estimate glucose and its rate-of-change (ROC), which are then used to predict future glucose levels
- HIIR: Hybrid Infinite Impulse Response filter that generates glucose predictions using previous CGM data
- NLA: Numerical logical algorithm that predicts by numerical estimation of the ROC and a set of logical expressions
- □ LP: Linear projection based on a short term linear extrapolation of the glucose trend

Results – Hypoglycemia Prediction

Variability in the Human Body: Stress Effects

Clinical evaluation of the effect of Prednisone [Bevier, et al., 2007]

✓ Progress has been made by several companies in developing fluorescent glucose sensors
Electrochemical sensor
GluMetrics fluorescent sensor

"...two independent and redundant sensor systems operating simultaneously...." Kowalski A J "Can We Really Close the Loop ..." *Diabetes Technol. and Ther.,* 11 Suppl. 113-119 (2009)

- Programming Implementation (mpMPC)
- Safety Constraints (Insulin-on-Board)

- Many challenges still remain:
 - Patient model identification
 - Reliable sensors & number of sensors
 - Transport and site issues
 - Patient variability (incl. stress, activity, etc.)
 - Regulatory issues

O Next

- More clinical trials

Upcoming: JDRF Multi-Center Trial of

All centers will use in silico testing and modular design of the control algorithm including: Hardware interface (the APS) developed in Santa Barbara; Safety Supervision Module developed at UVA / UCSB, and Range Correction Module developed in Padova.

540

Acknowledgments

- Bob Parker [*Pitt*]
- Camelia Owens [FDA]
- Dr. Cesar Palerm [*Medtronic*]
- Dr. Eyal Dassau
- Matt Percival
- Rachel Gillis [Eastman]
- Dr. Youqing Wang [Beijing Univ.]
- Rebecca Harvey
- Dr. Benyamin Grosman
- Christian Ellingsen

Collaborators:

Lois Jovanovic (Sansum), Howard Zisser (Sansum), Dale Seborg (UCSB)

