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Introduction.
Unmatched muscle power is a theoretical and experimental

technique intended to incorporate electrophysiological and adaptive

properties of skeletal muscle into virtual environment control. In

everyday settings where movement-related activities seem to be

effortless, the production of muscle power is hypothesized to be

perfectly matched to that activity.

The requirement of a mapping between the real and virtual worlds

provides an opportunity to intentionally distort control parameters

important to perception and action in a human-machine interface. By

understanding the neural response to distorted feedback, better

control strategies can be devised for applications relevant to

rehabilitation technologies and non-standard populations.

displacement in the virtual environment are used to parameterize

aspects of this decoupling.

Experimental results utilizing various forms of force-feedback

conditioning in a motion-controlled virtual environment will be

briefly discussed. Using these findings and principles, biologically

realistic control policies can be formulated to enhance purely

statistical or symbolic descriptions of real-world activities.

Merging virtual worlds with physiological

control.
Physiological control can play a role

in the design of movement-based

interfaces for rehabilitation and

immersive simulation.

Control principles in such devices can

be both linear (e.g. force-feedback)

and nonlinear (dampening as a

response to stimulus adaptation).

A design strategy which incorporates

both kinematic and kinetic aspects of

these relationships is needed.

The amount of force output relative

to that required for optimal control

during a given physical activity can

be under- or over-produced in cases

of pathology or injury, or when the

control imperative is poorly defined.
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Invariants, or scale-independent features of a system that most

compactly define its complexity, can be used as statistical tools.

Virtual environments can play a key role in identifying invariants by

selectively decoupling environment and physiological function.

Rather than using deterministic models of natural phenomena (such

as a programming description or machine learning approaches), we

might be able to leverage key attributes of physical models to

uncover key features of our coupled system.

Neuromechanics: an emerging approach to

brain, body, and behavior.
How do we touch, perceive, and interact with the physical world? An

approach called neuromechanics [B] can provide insight into how

we regulate movements in relation to mechanical stimuli.

Neuromechanics is a means to integrate the function of brain, body,

and environment in a way that treats each element in an explicit

manner. The scope of inquiry may range from intentional movement

behaviors in humans to the feeding mechanism in Aplysia [B].

The benefit of a neuromechanical approach is that forces, torques,

and friction [D] encountered by the body and experienced by the

nervous system can be characterized as a key feature of behavior.

These physical bases of behavior are especially useful in the context

of immersive virtual environments. This is traditionally known as

haptic interaction [E].

However, with the advent of brain-computer

interfaces (BMIs) [E], both movement-based

and physiological signals can be incorporated

into virtual models of reality.

Invariants [B] identified during the interaction

between physical and physiological systems

can provide design principles for novel

bioengineering devices.

Muscle Power in virtual

environments.
Muscle power [C]: amount of muscle activity

or limb movement required to produce a fixed

amount of work.

The conventional physiological definition

relies upon an entirely physical

conceptualization of work.

In this poster, a virtual component

representing an added control imperative will

be introduced.

Muscle power in virtual environments must

also take into account the mapping of muscle

activity and movement to a computational

model.

Unmatched muscle power: periods of time

when muscle activity and movement behavior

conspire to over- or under-perform relative to

what is needed for the task at hand.

Scope of inquiry



Environmental Switching: understanding and

minimizing unmatched muscle power.
A number of experiments in systems as diverse as human upper-

body movements, bacterial colonies, and artificial organisms [F]

have suggested that alternating between environments can initiate

adaptation and facilitate physiological regulatory mechanisms.

The process of switching between two alternating environments

can have multiple effects. One is an immediate effect on

performance after the environment is switched. The second is a

delayed effect on performance that may not become evident until

the environment has remained static for awhile.

Application Domain: more complex virtual

models of physical phenomena.
Interactive virtual environments that provide first-order movement

control and haptic feedback require a computational model that

balances completeness with compactness.

The simulation of fluid flows in a first-person canoeing simulation

can be used to illustrate how the existence of unmatched muscle

power depends on various representations of a physical

phenomenon.

In some cases, models represent various features of the actual

phenomenon at the expense of others. Physical features of the

environment quantified using these frameworks have an effect on

the magnitude of unmatched muscle power during interaction.

In other cases, models might be used to exploit key features of

neuromechanical function for purposes of rehabilitation [D] and

performance enhancement. For future applications, the components

of a virtual model might use representations such as Navier-Stokes

and add specialized force-fields to optimize (or selectively perturb)

performance.

Application Domain: prosthetic device design.
The term prosthetic device can refer to actual prosthetic and orthotic

devices, which include artificial limbs, or wearable devices such as

exoskeletons and sensor arrays [E]. Identifying instances of

unmatched muscle power during continuous action might provide a

way to map neuromechanical invariants to morphological structures.

Application Domain: BMI control.
Currently, BMI’s use machine learning or signal processing

techniques to find a well-characterized signal for control purposes

[E]. Unmatched muscle power could be used as continuously-varying

parameter to augment muscular control.

Future work.
There are several ways in which measurement of unmatched muscle

power can be improved. Two of these possibilities are discussed here.

The loading chamber (see experimental setup section) could be

modified to incorporate many different types of materials, from metal

balls to sand to a highly viscous fluid. The effect would be to vary the

inertial force component that determines the radius of gyration, and

thus change the magnitude of a loaded perturbation.

Additional experiments have been run using the Novint interface,

which delivers a direct force-feedback stimulus at the hand. Switching

between simulations of different surfaces in this environment showed

an effect for contact forces due to differential surface properties.

Fluid flows can be

simulated using

Navier-Stokes (left)

and Lagrangian

Coherent Structures

(right).



Work from performance.
Unmatched muscle power can be thought of in terms of power

production and work using the following equations.

where P is power, W is work, F is force exerted, t is time, and d is

displacement of object. In this case, a heuristic for work (W) is our

EMG amplitude, and our heuristic of displacement (d) is mapped

physiological output.

When the amount of power produced is large, more work is required

over a finite time period for a specified displacement of the object.

This results in a greater degree of mismatch as proposed by theory.

In these analyses, time (t) was kept constant. However, if t is treated

as a variable, unmatched muscle power becomes a second-order

derivative of the relationship between EMG amplitude and

movement performance as shown in equ. 3.0.

[1.0]

[2.0, 2.1]

[3.0]

Performance Measurements.
Actual movement behavior relative to force exerted was

characterized by mapped physiological output

where Dreq is the distance an object is to be moved in the virtual

environment, and Dmoved is the distance the object actually travels in

simulation (see Figure 1, right frame).

[4.0]

Figure 1.

Experimental apparatus. Left:

subject swinging the loaded

version of the device in the

virtual environment (turned

off).

Right: relationship between the

virtual environment,

technological devices, and the

physiological system.

Experimental Setup.
Taking inspiration from the motor control and systems biology

literature, an experimental approach was used that involved

transitioning (or switching) between two different force fields. A

reaching implement was used as a stand-in for a prosthetic device.

Using a motion controller and reaching implement (a repurposed

golf club), two conditions were explored. The “loaded” condition

involved weighting the end of the implement with a chamber filled

with either a liquid or solid. The “unloaded” condition involved

using only the motion controller. The Nintendo Wii was used

(WiiSports), which requires mimicry of movements associated with

a given activity.

The result of the loaded condition was to increase the radius of

gyration (Ro) and perturb movement. Additional perturbation was

introduced by interlacing loaded and unloaded conditions, which

introduced unknown lag and gain when the controller was used by

itself to control action in the virtual environment.

Perturbation definition: a

series of trials that differ

from the previous or

subsequent block.



In equ. 7.0, RP is the raw signal peak over a finite time interval, Smax

is the EMG signal across the duration of that time interval, and Ti is

the duration of a single trial. For each of these windows, the signal

was rectified and peak signal amplitude was calculated.

[6.0]

[7.0]

Raw EMG signal, loaded 

(top two windows)

Raw EMG signal, unloaded 

(top two windows)

Figure 2. Unmatched muscle power for Triceps brachii (TB).

Counterclockwise: upper left, comparison of loaded after

perturbation and unloaded after perturbation; lower left,

comparison of loaded before perturbation and unloaded before

perturbation; lower right, comparison of loaded perturbation and

unloaded perturbation; upper right, comparison of loaded well-

after perturbation and unloaded well-after perturbation.

The radius of gyration for the reaching implement was held constant, 

and is defined by

[5.0]

where the numerator is the moment of inertia and A is the cross-

sectional area of the reaching implement.

Unmatched muscle power can be characterized by Equ. 6.0, which is

the proportion of raw signal peak (RP) to mapped physiological

output (MPO) over a finite time interval.

Discovery of unmatched muscle power

characteristics.
To discover the patterns underlying the unmatched muscle power

phenomenon, a series of plots were produced that characterize the

complex function f(UMP) under a series of conditions.

These plots include components of the UMP measurement

considered seperately, the UMP measurement as a function of each

type of experimental condition, and the raw EMG signal under

loaded and unloaded conditions.



Figure 3. Unmatched muscle power for Flexor carpi radialis

(FCR). Counterclockwise: upper left, comparison of loaded after

perturbation and unloaded after perturbation; lower left,

comparison of loaded before perturbation and unloaded before

perturbation; lower right, comparison of loaded perturbation and

unloaded perturbation; upper right, comparison of loaded well-

after perturbation and unloaded well-after perturbation.

Unmatched muscle power can be characterized as a complex

function which is variable for specific conditions. In Figure 2 and 3,

a comparison between loaded and unloaded conditions are made for

four different conditions.

Significant jaggedness characterize the amplitude of the waveform

above a baseline of 1. The most basic result is that patterns of

unmatched muscle power are variable between representative

humeral (TB) and forearm (FCR) muscles.

The other obvious result is a lack of

unmatched muscle power for small

MPO values after a perturbation has

been encountered. This may be due to a

clearer control imperative for smaller

distances to the target.

If we consider MPO as an error

measurement, trials in which accuracy

is greater for goal distances of any

length results in less matching and thus

less raw EMG amplitude.

ADF analysis for different

orders of stimuli.
An Amplitude Distribution Function

(ADF) can provide informationn w.r.t.

peaks and other important information

in the raw signal [A].

Figure 4 provides a series of histograms

characterizing the unmatched muscle

power measurement for each unique

Figure 4. Histogram for ratio of

Amplitude Peaks for Triceps brachii

(TB - top) and Flexor carpi radalis

(FCR - bottom to MPO

measurement for all trials in an

experimental block (i.e. Unmatched

Muscle Power). For purposes of

analysis, the data were sorted into

classes representing intervals of the

UMP measurement.



Unloaded Stimulus: 

representative humeral muscle 

(Triceps brachii)

Loaded Stimulus: 

representative humeral muscle 

(Triceps brachii)

Unloaded Stimulus: 

representative forearm muscle 

(Flexor carpi radialis)

Loaded Stimulus: 

representative forearm muscle 

(Flexor carpi radialis)

Figure 5. Amplitude distribution functions for two stimulus conditions (left

vs. right) and two representative muscles (top vs. bottom) in the arm. Inset for

each graph is a course-grained analysis of same data. NOTE: only first ten

items for x-axis are shown.

condition presented.

For the muscle representing the humerus (Triceps brachii),

the histogram exhibits a broader distribution during

perturbation for both stimulus conditions. Likewise, a

perturbation moves a given histogram distribution leftward

(lower) after perturbation.

For the muscle representing the forearm (Flexor carpi

radialis), the UMP distribution is low before perturbation.

In the unloaded stimulus condition, this does not change

after perturbation. In the loaded stimulus condition, this

distribution moves rightward (higher) after perturbation.

General ADF analysis for loaded vs.

unloaded stimuli.
Since Triceps brachii and Flexor carpi radialis are not

antagonistic muscles, their activity can provide a window

into different phases of neuromuscular regulation due to a

common set of imposed forces and inertial movements

(see Figure 5).

From this result, it appears that loading the arm results in

enhanced modulation of activity at the humerus, but little

effect at the forearm. In the case of the humerus, there

were more instances covering a broader range of amplitude

values in response to the loaded stimulus.

By looking at the course-grained analysis (see Inset), it

appears that the loaded stimulus has an pronounced effect

on both muscles, albeit differential.

The loaded condition in the representative forearm muscle

in particularly interesting in that more modulation is

apparent in cases when the unloaded stimulus is present.
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